cnc, istanbul, torna, işleme merkezi


Bernhard Riemann

Yazar admin

Her türlü güncel ve genel bilgi rafist.com

Bernhard Riemann

Bernhard Riemann, 1863
Doğum 17 Eylül 1826
Breselenz, Almanya
Ölüm 20 Temmuz 1866
Selasca, İtalya
Milliyeti Alman
Branşı Matematik
Çalıştığı yerler Göttingen Üniversitesi
Öğrenim Göttingen Üniversitesi
Berlin Üniversitesi
Doktora hocası Carl Friedrich Gauss
Önemli başarıları Riemann hipotezi
Riemann integrali
Eliptik geometri

Georg Friedrich Bernhard Riemann (17 Eylül 1826 – 20 Temmuz 1866), analiz ve diferansiyel geometri dalında çok önemli katkıları olan Alman matematikçidir. Söz konusu katkılar daha sonra izafiyet teorisinin geliştirilmesinde önemli rol oynamıştır. Bu matematikçinin ismi aynı zamanda zeta fonksiyonu, Riemann hipotezi, Riemann manifoldları ve Riemann yüzeyleri ile de bağlantılıdır.

Almanya‘da Dannenberg yakınlarındaki Hanover Krallığının Breselenz kasabasında doğan matematikçinin babası Friedrich Bernhard Riemann idi. Bernhard Riemann altı çocuklu bir ailenin ikinci çocuğuydu.

Riemann, 1840 yılında büyükannesi ile yaşamak ve Lyceum‘u ziyaret etmek için Hanover’e gitti. Büyükannesinin 1842 yılındaki vefatından sonra Lüneburg‘daki Johanneum‘a giden Riemann, 1846‘da yani 19 yaşında Göttingen Üniversitesi‘nde filoloji ve teoloji çalışmaya başladı. En küçük kareler yöntemini anlatan matematikçi Gauss‘un derslerine katıldı. 1847 yılında Riemann’ın babası ona teolojiyi bırakıp matematik çalışması için izin verdi.

1847 yılında Berlin‘e gitti. Burada Jacobi, Dirichlet veya Steiner ders veriyordu. Berlin’de iki yıl kalan matematikçi 1849 yılında Göttingen‘e döndü.

Riemann ilk dersini 1854‘te verdi ve bu dersle sadece Riemann geometrisinin temellerini kurmakla kalmadı aynı zamanda daha sonra Einstein‘in izafiyet teorisinde kullanacağı yapıların da temellerini attı. 1857‘de Götingen Üniversitesi’nde özel profesörlük kademesine terfi etti ve 1859‘da profesör oldu.

1862 yılında Elise Koch ile evlendi.

Selasca, İtalya‘ya doğru gerçekleştirdiği üçüncü seyahatte hayata gözlerini yumdu.

Riemann hipotezi (Riemann zeta hipotezi olarak da bilinmektedir), matematik alanında ilk kez 1859 yılında Bernhard Riemann tarafından ifade edilmiş fakat günümüze kadar çözülememiş problemlerden biridir.

Bazı pozitif tamsayıların kendilerinden küçük ve 1′den büyük tamsayıların çarpımı (örn. 2, 3, 5, 7, …) cinsinden yazılamamak gibi bir özelliği vardır. Bu tür sayılara Asal sayılar denir. Asal sayılar, hem matematik hem de uygulama alanlarında çok önemli rol oynar. Asal sayıların tüm doğal sayılar içinde dağılımı bariz bir örüntüyü takip etmemektedir ancak Alman matematikçi Riemann, asal sayıların sıklığının;

s ≠ 1 olmak koşuluyla tüm s karmaşık sayıları için

\zeta(s) = 1 + 1/2^s + 1/3^s + 1/4^s + ... = \sum_{n=1}^\infin  \frac{1}{n^s}

biçiminde belirtilen ve Riemann Zeta Fonksiyonu olarak bilinen fonksiyonun davranışına çok bağlı olduğunu gözlemledi. Riemann hipotezinin iddiasına göre

ζ(s) = 0

denkleminin tüm çözümleri karmaşık düzlemde bir doğru üzerinde yer almaktadır. Daha kesin bir söyleyişle, bu denklemin tüm karmaşık sayı çözümlerinin gerçel kısımlarının ½ olduğu tahmin edilmektedir. Bu iddia ilk 1.500.000.000 çözüm için sınanmıştır. Bu iddianın her çözüm için doğru olduğunun ispatlanabilmesi halinde asal sayıların dağılımı ile ilgili çok önemli bilgiler edinmek mümkün olacaktır.

RİEMANN TOPLAMI

Riemann anlamında integralin tanımlanmasında kullanılan toplamdır.

\sum_{i=1}^{n}f\left(p_i\right)*\Delta x_i

Δxi ler fonksiyonun tanım aralığının sonsuz küçük bölüntüleri, pi ise bu bölüntülerden alınan bir sayıdır. n ise bölüntülerin toplam sayısıdır.

Bu yazı toplamda 2055, bugün ise 0 kez görüntülenmiş

Share
Ev ve İş Telefonu Başvurusu Yapmak İçin; Buraya tıklayınız...

CommentYorum